Каков физический смысл потенциальной и кинетической энергии. §2.6 Кинетическая энергия. О физическом смысле понятия потенциальной энергии
Если элементарное перемещение d записать в виде:
По II закону Ньютона:
Величина называется кинетической энергией
Работа равнодействующей всех сил действующих на частицу равна изменению кинетической энергии частицы.
или другая запись
кинетический диссипативный скалярный физический
Если A > 0, то WК возрастает (падения)
Если A > 0, то WК убывает (бросание).
Движущиеся тела обладают способностью выполнять работу и в том случае, если никакие силы со стороны других тел на них не действуют. Если тело движется с постоянной скоростью, то - сумма всех сил действующих на тело равна 0 и работа при этом не совершается. Если тело будет действовать с некоторой силой по направлению движения на другое тело, тогда оно способно совершить работу. В соответствии с ІІІ законом Ньютона к движущемуся телу будет приложена такая же по величине сила, но направленная в противоположную сторону. Благодаря действию этой силы скорость тела будет уменьшаться до его полной остановки. Энергия WК, обусловленная движением тела, называется кинетической. Полностью остановившееся тело не может совершить работы. WК зависит от скорости и массы тела. Изменение направления скорости не влияет на кинетическую энергию.
Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.
Кинетическая и потенциальная энергия
Различают два вида энергии – кинетическую и потенциальную.
ОПРЕДЕЛЕНИЕ
Кинетическая энергия – это энергия, которой тело обладает вследствие своего движения:
ОПРЕДЕЛЕНИЕ
Потенциальная энергия – это энергия, которая определяется взаимным расположением тел, а также характером сил взаимодействия между этими телами.
Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе по перемещению тела из данного положения на нулевой уровень:
Потенциальная энергия – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :
Тело может одновременно обладать и кинетической, и потенциальной энергией.
Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):
Закон сохранения энергии
Для замкнутой системы тел справедлив закон сохранения энергии:
В случае, когда на тело (или систему тел) действуют внешние силы, например, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно внешних сил:
Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и , он справедлив не только для , но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.
В наиболее общем виде закон сохранения энергии можно сформулировать так:
- энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.
Примеры решения задач
ПРИМЕР 1
Задание | Пуля, летящая со скоростью 400 м/с, попадает в земляной вал и проходит до остановки 0,5 м. Определить сопротивление вала движению пули, если ее масса 24 г. |
Решение | Сила сопротивления вала – это внешняя сила, поэтому работа этой силы равна изменению кинетической энергии пули:
Так как сила сопротивления вала противоположна направлению движения пули, работа этой силы: Изменение кинетической энергии пули: Таким образом, можно записать: откуда сила сопротивления земляного вала: Переведем единицы в систему СИ: г кг. Вычислим силу сопротивления: |
Ответ | Сила сопротивления вала 3,8 кН. |
ПРИМЕР 2
Задание | Груз массой 0,5 кг падает с некоторой высоты на плиту массой 1 кг, укрепленную на пружине с коэффициентом жесткости 980 Н/м. Определить величину наибольшего сжатия пружины, если в момент удара груз обладал скоростью 5 м/с. Удар неупругий. |
Решение | Запишем для замкнутой системы груз+плита. Так как удар неупругий, имеем:
откуда скорость плиты с грузом после удара: По закону сохранения энергии полная механическая энергия груза вместе с плитой после удара равна потенциальной энергии сжатой пружины: |
Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция - это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность - это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела. Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.
Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО). В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.
Трети закон.Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой, а второе - на первое с силой. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются. Действию всегда есть равное и противоположное противодействие, иначе - взаимодействия двух тел друг на друга равны и направлены в противоположные стороны.
4 ) При́нцип относи́тельности - фундаментальный физический принцип, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.
Отсюда следует, что все законы природы одинаковы во всех инерциальных системах отсчёта.
Различают принцип относительности Эйнштейна (который приведён выше) и принцип относительности Галилея, который утверждает то же самое, но не для всех законов природы, а только для законов классической механики, подразумевая применимость преобразований Галилея, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике.
В современной литературе принцип относительности в его применении к инерциальным системам отсчета (чаще всего при отсутствии гравитации или при пренебрежении ею) обычно выступает терминологически как лоренц-ковариантность (или лоренц-инвариантность).
5) Силы в природе.
Несмотря на разнообразие сил, имеется всего четыре типа взаимодействий: гравитационное, электромагнитное, сильное и слабое.
Гравитационные силы заметно проявляются в космических масштабах. Одним из проявлений гравитационных сил является свободное падение тел. Земля сообщает всем телам одно и то же ускорение, которое называют ускорением свободного падения g. Оно незначительно меняется в зависимости от географической широты. На широте Москвы оно равно 9,8 м/с2.
Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сильные и слабые взаимодействия проявляются внутри атомных ядер и в ядерных превращениях.
Гравитационное взаимодействие существует между всеми телами, обладающими массами. Закон всемирного тяготения, открытый Ньютоном, гласит:
Сила взаимного притяжения двух тел, которые могут быть принятыми за материальные точки, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними:
Коэффициент пропорциональности у называют гравитационной постоянной. Она равна 6,67 10-11 Н м2/кг2.
Если на тело действует лишь гравитационная сила со стороны Земли, то она равна mg. Это и есть сила тяжести G (без учета вращения Земли). Сила тяжести действует на все тела, находящиеся на Земле, вне зависимости от их движения.
При движении тела с ускорением свободного падения (или даже с меньшим ускорением, направленным вниз) наблюдается явление полной или частичной невесомости.
Полная невесомость - отсутствие давления на подставку или на подвес. Вес - сила давления тела на горизонтальную опору или сила растяжения нити со стороны подвешенного к ней тела, которая возникает в связи с гравитационным притяжением данного тела к Земле.
Силы притяжения между телами неуничтожимы, тогда как вес тела может исчезнуть. Так, в спутнике, который двигается с первой космической скоростью вокруг Земли, вес отсутствует так же, как в лифте, падающем с ускорением g.
Примером электромагнитных сил являются силы трения и упругости. Различают силы трения скольжения и силы трения качения. Сила трения скольжения намного больше силы трения качения.
Сила трения зависит в некотором интервале от приложенной силы, которая стремится сдвинуть одно тело относительно другого. Прикладывая различную по величине силу, увидим, что небольшие силы не могут сдвинуть тело. При этом возникает компенсирующая сила трения покоя.
При отсутствии сил, сдвигающих тело, сила трения покоя равна нулю. Наибольшее значение сила трения покоя приобретает в момент, когда одно тело начинает двигаться относительно другого. В этом случае сила трения покоя становится равной силе трения скольжения:
где n - коэффициент трения, N - сила нормального (перпендикулярного) давления. Коэффициент трения зависит от вещества трущихся поверхностей и их шероховатости.
6) Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.
Центр масс в механике - это геометрическая точка, характеризующая движение тела или системы частиц как целого. онятие центра масс широко используется в физике.
Движение твёрдого тела можно рассматривать как суперпозицию движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.
Эне́ргия - скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие. Механическая работа - это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины и направления силы (сил) и от перемещения точки (точек) тела или системы. Энергия является мерой способности физической системы совершить работу, поэтому количественно энергия и работа выражаются в одних единицах.
Механическая работа и механическая энергия отождествляются.
Мо́щность - физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
Кинети́ческая эне́ргия - энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ - Джоуль.Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением.
Потенциальная энергия - скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.Любая физическая система стремится к состоянию с наименьшей потенциальной энергией. Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:
где Ep - потенциальная энергия тела, m - масса тела, g - ускорение свободного падения, h - высота положения центра масс тела над произвольно выбранным нулевым уровнем.
О физическом смысле понятия потенциальной энергии
Если кинетическая энергия может быть определена для одного отдельного тела, то потенциальная энергия всегда характеризует как минимум два тела или положение тела во внешнем поле.
Кинетическая энергия характеризуется скоростью; потенциальная - взаиморасположением тел.
Основной физический смысл имеет не само значение потенциальной энергии, а её изменение.
8) В физике механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергии, имеющихся в компонентах механической системы. Механическая энергия - это энергия, связанная с движением объекта или его положением.Закон сохранения механической энергии утверждает, что если тело или система подвергается действию только консервативных сил, то полная механическая энергия этого тела или системы остаётся постоянной. В изолированной системе, где действуют только консервативные силы, полная механическая энергия сохраняется.
Похожая информация.
Потенциальная энергия - скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил.
Форвардный курс и его расчет.
Рынок срочных валютных операций. Форвардные сделки.
На форвардном рынке торгуют валютой с поставкой в будущем по фиксированному курсу. Форвардный рынок характеризуется целым рядом особенностей.
- На форвардном рынке не существует единого стандарта, связанного с датой расчётов. Любой день после спотовой даты может быть датой расчётов по форвардной сделке.
- Продолжительность сделок на форвардном рынке варьируется от 3дней до 3 лет.
- Форвардный рынок имеет децентрализованную структуру. Его участники по всему миру вступают в сделки либо непосредственно друг с другом, либо через посредство брокеров.
- Форвардный рынок характеризуется сложным механизмом курсообразования. Форвардное ценообразование зависит одновременно от трёх факторов – от спотового обменного курса, даты расчётов и разницы в процентных ставках.
- Форвардный рынок менее волатилен по сравнению со спотовым рынком, поэтому его называют медленным рынком.
Существуют два основных вида дат валютирования на форвардном рынке: стандартные и нестандартные. Стандартными форвардными датами валютирования называются:
- сроки расчётов, совпадающие с одной неделей, одним месяцем, одним годом или совокупностью этих периодов времени;
- дата расчёта «том-некст» (tomorrow/next, T/N), которая означает дату поставки валюты на следующий рабочий день или за один рабочий день до спотовой даты;
- дата расчёта «спот-некст» (spot/next, S/N), которая предполагает дату расчёта через рабочий день после спотовой даты или через три рабочих дня после заключения сделки;
- наличная дата (cashdate), когда дата поставки валюты совпадает с датой заключения сделки.
Нестандартной форвардной датой является любая оговорённая в контракте дата расчётов, не совпадающая со стандартной датой валютирования.
Особенности определения дат валютирования в форвардных сделках. Форвардные даты валютирования основываются на спотовых датах, поэтому при их определении необходимо отсчитывать от спотовой даты, а не от даты заключения сделки.
Единицей измерения энергии в СИ является Джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.
Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.
Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.
Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.
Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.
Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:
где m - масса тела, g - ускорение свободного падения, h- высота положения центра масс тела над произвольно выбранным нулевым уровнем.
1. Если кинетическая энергия может быть определена для одного отдельного тела, то потенциальная энергия всегда характеризует как минимум два тела или положение тела во внешнем поле.
2. Кинетическая энергия характеризуется скоростью; потенциальная - взаиморасположением тел.
3. Основной физический смысл имеет не само значение потенциальной энергии, а её изменение.